

EasyLanguage Extension
Software Development Kit

Revised: 09/30/2011

The Standard in Rule-Based Trading™

Important Information and Disclaimer:

TradeStation Securities, Inc. seeks to serve institutional and active traders. Please be advised that
active trading is generally not appropriate for someone of limited resources, limited investment or
trading experience, or low risk tolerance, or who is not willing to risk at least $50,000 of capital.

This book discusses in detail how TradeStation is designed to help you develop, test and
implement trading strategies. However, TradeStation Securities does not provide or suggest
trading strategies. We offer you unique tools to help you design your own strategies and look at
how they could have performed in the past. While we believe this is very valuable information,
we caution you that simulated past performance of a trading strategy is no guarantee of its future
performance or success. We also do not recommend or solicit the purchase or sale of any
particular securities or securities derivative products. Any securities symbols referenced in this
book are used only for the purposes of the demonstration, as an example ---- not a
recommendation.

Finally, this book shall discuss automated electronic order placement and execution. Please note
that even though TradeStation has been designed to automate your trading strategies and deliver
timely order placement, routing and execution, these things, as well as access to the system itself,
may at times be delayed or even fail due to market volatility, quote delays, system and software
errors, Internet traffic, outages and other factors.

All proprietary technology in TradeStation is owned by TradeStation Technologies, Inc., an
affiliate of TradeStation Securities, Inc. The order execution services accessible from within
TradeStation are provided by TradeStation Securities, Inc. pursuant to a technology license from
its affiliate and its authority as a registered broker-dealer and introducing broker. All other
features and functions of TradeStation are provided directly by TradeStation Technologies.
TradeStation® and EasyLanguage® are registered trademarks of TradeStation Technologies, Inc.
"TradeStation," as used in this document, should be understood in the foregoing context.

Options trading is not suitable for all investors. Your account application to trade options will be considered and approved or
disapproved based on all relevant factors, including your trading experience. Automated trading, as it relates to direct-access
electronic placement and execution of equity options trades, requires manual one-click verification before order is sent. Please visit
www.TradeStation.com to view the document titled Characteristics and Risks of Standardized Options.

Copyright © 2002-2011 TradeStation Securities, Inc. All rights reserved.
Member NASD, SIPC & NFA. A subsidiary of TradeStation Group, Inc.

EasyLanguage Extension Software Development Kit

Revised: 09/30/2011

Contents

Overview

Style Conventions Used In This Reference

1.) Style Examples

Using the SDK

1.) Importation of tskit.dll
2.) Declaration of DLL Functions
3.) IEasyLanguageObject Pointer
4.) Standard C Calling Convention
5.) Tracking Analysis Techniques

Type Library Reference

1.) Available Data Types
2.) Legacy Compatibility Notice
3.) Enumerated Data Types

A.) EN_DATA_STREAM
B.) enDataType
C.) enPlatformType

4.) Structures

A.) TSRuntimeErrorItem

5.) Tables of Interface Properties

A.) IEasyLanguageObject
B.) IEasyLanguagePrice
C.) IEasyLanguageVariable
D.) IEasyLanguageDateTime
E.) ITradeStationPlatform
F.) IEasyLanguageErrors
G.) IEasyLanguageProperties
H.) IELFrameworkArray
I.) IEasyLanguageSystem
J.) IEasyLanguageServerField

Demonstration DLL Code

Support

1

Overview

The EasyLanguage Extension SDK is intended for use in conjunction with
analysis techniques written in EasyLanguage. It makes it easier for you to integrate
function libraries developed in another programming language with analysis
techniques developed in EasyLanguage.

Used in conjunction with an EasyLanguage analysis technique, the SDK

provides access to the price and volume data of the chart (or RadarScreen symbol)
to which the EasyLanguage analysis technique is applied, and to the EasyLanguage
variables and arrays contained in the analysis technique. Certain EasyLanguage
analysis technique settings, like “maxbarsback,” are accessible through the SDK, as
are some values relevant to calculation, like CurrentBar. Additionally, the SDK
provides the ability to raise a run-time error in TradeStation, in a manner similar to
that of the EasyLanguage reserved word RaiseRunTimeError.

This version of the EasyLanguage SDK does not provide access to all

TradeStation reserved words, nor can functions written in EasyLanguage be called
directly. (Of course, many programming languages have run-time libraries that
perform many of the functions available through EasyLanguage reserved words,
especially mathematical functions. Market/Trading functions are a notable
exception, because of the specific nature of their use.)

The SDK does not provide the ability to plot directly on a chart, nor to directly

buy or sell. However, these functions can be performed by EasyLanguage studies or
strategies. The SDK does not provide the ability to access data from TradeStation
windows other than those into which an EasyLanguage analysis technique has been
inserted. For example, the SDK does not provide access to values shown in the
“Matrix” or “News” windows of TradeStation.

This reference provides the basic information necessary to make the SDK

functions available to your DLL, and to call your DLL functions from EasyLanguage in
a manner that will provide your DLL with the information it needs to use the SDK.
Because use of the EasyLanguage Extension SDK is an advanced topic in
EasyLanguage, this reference presumes some familiarity with EasyLanguage. Some
familiarity with C++ is presumed by the C++ code examples. Some example code
may be Visual C++® (Microsoft) specific.

Style Conventions Used In This Reference

The library descriptions presented in this reference are usually provided in a
“pseudocode” format. That is, they do not follow any particular programming

2

language’s syntax requirements. When language-specific examples are provided, it
will be clear from the context that the example is language-specific.

EasyLanguage is not a case-sensitive language. Any capitalization added to the

EasyLanguage code in this document is provided for the sole purpose of enhancing
code readability. (There is an exception to the rule that EasyLanguage is not case-
sensitive. When a DLL function name is given in an external statement, the
function name is case-sensitive. However, the function name is not case sensitive
when used elsewhere in the code (outside the external statement). More detail on
the external statement is provided below, in the section on declaration of DLL
functions.)

The following is a description of the format used for all code in this document:

Courier New font – Program code is presented using the Courier New font. This
font is used to distinguish code segments from descriptive text. Also, this font is a
“monospace” font; all letters are the same width horizontally. This aids in creating
uniform spacing of code blocks.

Italic – Italics are used in property or method syntax examples to distinguish
words that are incidental to the property or method being described.

Boldface Italic – Boldface italics are used in property or method syntax examples
to distinguish the names of the actual properties or methods being described.

() – Parentheses are used in property and method syntax examples to indicate
statement elements that are optional to the use of a property or method. Such
examples usually present only one possible use of the property or method.

Italic and boldface fonts, and parentheses, have their usual meanings when used in
this document outside code blocks.

Style Examples:

Pseudocode:

InterfaceObject.AsDouble[nBarsBack] (= dValue;)

C++

pMyVar->AsDouble[nBarsBack] (= 17.5475 ;)

3

Using the SDK

The EasyLanguage Extension SDK is implemented in the file tskit.dll. This file is
installed, by default, in the \Program subdirectory of the directory into which
TradeStation is installed.

EasyLanguage exposes its run-time information through a COM interface, which

is implemented in tskit.dll. This dispatch interface has the name
IEasyLanguageObject.

In order for your DLL to use the SDK, and to make a DLL TradeStation-

compatible, several things must be accomplished. These requirements are listed
below. Some requirements are specific to DLL’s that use the SDK. Whether a
requirement applies to all DLL’s or to only DLL’s that use the SDK is noted in the
detailed list of requirements below. Here is the list of requirements:

1.) The DLL must import tskit.dll. Every programming language has a
specific means of accomplishing this. A C++ example is provided below.
This requirement applies to the DLL only if the DLL uses the SDK. This is
not a requirement of DLL’s that do not use the SDK.

2.) The EasyLanguage analysis technique that calls the DLL function must

declare the DLL function in an external statement. This requirement
applies to the DLL only if the DLL uses the SDK. This is not a
requirement of DLL’s that do not use the SDK. If the DLL does not use
the SDK then either the external reserved word or the legacy
reserved word DefineDLLFunc may be used to declare DLL functions.

3.) A pointer to the IEasyLanguageObject interface of the EasyLanguage

analysis technique must be passed from the analysis technique to the
DLL. This is accomplished using the reserved word self in the
EasyLanguage analysis technique. This requirement applies to the DLL
only if the DLL uses the SDK. This is not a requirement of DLL’s that do
not use the SDK.

4.) The DLL must export functions using the __stdcall calling convention.

This is a requirement of all TradeStation-compatible DLL’s. It applies to
both DLL’s that use the SDK and to DLL’s that do not use the SDK.

5.) Optional: The #Events and #End compiler directives may be used in

conjunction with the reserved words OnCreate and OnDestroy to specify
DLL functions to be run when an EasyLanguage analysis technique that
calls DLL functions is activated or deactivated. This option applies only
to DLL’s that use the SDK.

Additional detail on these requirements is provided below:

4

1.) Importation of tskit.dll

In order to use the SDK, your DLL project must include a reference to tskit.dll.
As previously mentioned, tskit.dll is located, by default, in the \Program subdirectory
of the directory into which TradeStation is installed. Unlike the legacy SDK, there
are no header files included; they are not needed. To make use of the SDK, simply
include the following line in your Visual C++® DLL Project:

#import "c:\Program Files\TradeStation\Program\tskit.dll"
no_namespace

This #import directive results in the creation of two type library header files: a
primary header file named “tskit.tlh”, and a secondary header file named “tskit.tli”.
These files are created during DLL project compilation and are placed, by the
compiler, in the DLL project subdirectory. Both files are read and compiled as if the
primary header file had been named in an #include directive. (The secondary
header file is compiled because it is named in an #include directive at the end of the
primary header file.)

2.) Declaration of DLL Functions

The reserved word external is used in EasyLanguage to declare a DLL function
that resides outside EasyLanguage. Such a declaration may contain path information
which specifies the location of the DLL file that contains the external function. The
external statement must contain the name of the DLL file, the DLL function return
type, and the types of all parameters being passed to the DLL function.

The syntax of an external statement is:

external: ["<PATH>”,] [RETURN TYPE,] "<DLL FUNCTION NAME>",
[ARGUGMENT 1 TYPE, ARGUMENT 2 TYPE, …] ;

Here is a detailed description of the syntax specified above. An example
external statement is provided below.

PATH is the Windows directory path to the DLL file. PATH is an optional parameter. If
a path is not specified, the subdirectory “C:\Program Files\TradeStation\Program\” is
presumed to be the subdirectory that contains the DLL file. If the DLL is not found in
the \TradeStation\Program subdirectory, then the directories in the computer’s
system path statement will be searched. If the DLL is not located in any of those
directories, a run-time error will occur.

RETURN TYPE is the data type of the value that the DLL function will return (int, bool,
double, float, etc.)

5

DLL FUNCTION NAME is a mandatory parameter of the external statement. It is the
name of the function exported by the DLL. The function name must be placed inside
quotation marks. As noted above, function names are case-sensitive when used in
the external statement but are not case-sensitive when used elsewhere in
EasyLanguage code.

ARGUMENT 1 TYPE, ARGUMENT 2 TYPE, … are optional parameters of the external
statement. The argument types are the data types of the arguments received by the
DLL function. The supported argument data types are listed in the Type Library
Reference section, below.

Here’s an example external statement:

external: "c:\MyDLLs\MyDLLFile.dll", double, "MYFUNCTIONNAME",
int ;

This example statement declares a DLL function MYFUNCTIONNAME that is
exported from the DLL file MyDLLFile.dll. The file MyDLLFile.dll is located in the
C:\MyDLLs\ subdirectory. The function MYFUNCTIONNAME receives one integer
argument and returns one double-precision float value.

It is a good practice to provide names for DLL function arguments and return

values using comment braces, as in the following external statement:

external: "c:\MyDLLs\MyDLLFile.dll", {OscA}double,
"MYFUNCTIONNAME", {Length}int ;

3.) IEasyLanguageObject Pointer (self)

The reserved word self is used to provide a pointer to the
IEasyLanguageObject interface associated with a given analysis technique. For a
DLL function to use the interfaces provided in the SDK, the DLL function will need a
pointer to the IEasyLanguageObject interface associated with the EasyLanguage
analysis technique. Using this pointer, the DLL function may derive other SDK
interface objects (IEasyLanguageVariable, IEasyLanguageDateTime,
ITradeStationPlatform, etc.)

Here is some EasyLanguage code that declares a DLL function, then calls it:

external: “MyDll.dll”, double, “MyADX”, IEasyLanguageObject {self}, int
{Length};

inputs:
 Length(10) ;

variables:
 int MyELVar(0) ;

6

MyELVar = MyADX(self, Length) ;

The DLL prototype for the function MyADX might look like this:

int __stdcall MyADX(IEasyLanguageObject * pELObj, int nLength) ;

If the first argument received by a DLL function is a pointer to an
IEasyLanguageObject interface, the reserved word method may be used in
conjunction with external to pass this pointer automatically. For example, the
following two declarations are equivalent:

external method: “MyDll.dll”, double, “MyADX”, int {length};

external: “MyDll.dll”, double, “MyADX”, IEasyLanguageObject {self}, int
{length};

4.) Standard C Calling Convention

DLL functions must be exported using the “standard C” calling convention in order for
TradeStation to locate them. Additionally, exported functions should be listed in the EXPORTS
section of the DLL project’s module-definition (.DEF) file.

The C++ code example below illustrates the use of __stdcall notation in a function
prototype. This is the function prototype for a DLL function called EXAMPLEONCREATE, a
function which receives a pointer to an IEasyLanguageObject as its sole argument, and returns
an integer:

int __stdcall EXAMPLEONCREATE(IEasyLanguageObject * pELObj) ;

5.) Tracking Analysis Techniques

In place of the legacy Dll_Add and Dll_Free functions, EasyLanguage has added
support for “events”. Currently, two events are supported: “OnCreate” and
“OnDestroy”. The OnCreate event occurs when an analysis technique is first inserted
into a chart, any time a chart reload occurs, or when the status of the analysis
technique is cycled from OFF to ON. You may create functions in your DLL that can
be executed when these events occur.

Any DLL function that should be executed when an analysis technique that uses

a DLL first loads should be referenced in an OnCreate statement. Similarly, any DLL
function that should be executed when an analysis technique that uses a DLL is
disabled should be referenced in an OnDestroy statement.

7

By providing a means of executing DLL functions when an analysis technique
first loads and when it unloads, the OnCreate and OnDestroy events give
programmers a method of tracking their analysis techniques, initializing variables,
and performing housekeeping when analysis techniques that use DLL functions load
or unload.

DLL functions to be executed when OnCreate or OnDestroy events occur must

receive one, and only one, argument from the calling EasyLanguage analysis
technique. That argument must be a pointer to the IEasyLanguageObject interface
for the calling analysis technique. (As will be shown below, this argument may be
passed explicitly, but will be passed automatically by EasyLanguage even if not
explicitly passed in the EasyLanguage call to the DLL function.) Also, the DLL
function(s) to be executed when the OnCreate and OnDestroy events occur must
return an integer.

If an OnCreate or OnDestroy call is used in a strategy, the OnCreate and/or

OnDestroy DLL functions will be called twice. Strategies behave a bit differently in
this respect than other studies. When a strategy is applied to a chart, a "strategy
group" is created internally in order to accommodate the possibility that multiple
strategies, which interact with each other, will be inserted into the chart. Because a
strategy group is recognized internally as a module by EasyLanguage, the OnCreate
and OnDestroy events occur twice, once for the strategy itself and once for the
strategy group. This is what prompts the second call to the OnCreate and OnDestroy
functions when the strategy is activated (OnCreate) or deactivated (OnDestroy).

Here is some EasyLanguage code that demonstrates that the self pointer need

not be explicitly passed to the DLL:

external: "Sample.dll", int, "EXAMPLEONCREATE", IEasyLanguageObject ;

external: "Sample.dll", int, "EXAMPLEONDESTROY", IEasyLanguageObject ;

#events
 OnCreate = EXAMPLEONCREATE ;
 OnDestroy = EXAMPLEONDESTROY ;
 { Note: self pointer not explicitly passed in these two function

calls }
#end ;

Here are the prototypes for the DLL functions that will be called when the
OnCreate and OnDestroy events occur:

int __stdcall EXAMPLEONCREATE(IEasyLanguageObject * pEL);
int __stdcall EXAMPLEONDESTROY(IEasyLanguageObject * pEL);

8

If multiple DLL functions are to be run when the OnCreate or OnDestroy events
occur, each DLL function prior to the last one to be run must return a value of zero
(or FALSE) to indicate normal completion. If a non-zero value is returned, then
subsequent functions to be run during the event will not be called.

To call multiple DLL functions when an event occurs, either of the following

syntaxes may be used:

A.) More than one function may be listed in each OnCreate and OnDestroy
statement. Functions will be executed in the order listed. Here is some
example code:

#Events
 OnCreate = MyFunc1, MyFunc2, MyFunc3;
 OnDestroy = MyFunc4, MyFunc5, MyFunc6;
#End

B.) Multiple OnCreate and/or OnDestroy statements may be used.
Functions will be executed in the order listed. Here is some example
code:

#Events
 OnCreate = MyFunc1;
 OnCreate = MyFunc2;
 OnDestroy = MyFunc4;
 OnDestroy = MyFunc5;
#End

This completes the section of this reference devoted to discussion of using the
SDK. We have discussed the five basic requirements of TradeStation-compatible
DLL’s that use the SDK. To review, those requirements are:

1.) Importation of tskit.dll
2.) Declaration of DLL Functions
3.) IEasyLanguageObject Pointer
4.) Standard C Calling Convention
5.) Tracking Analysis Techniques

Below, the contents of the TSKit type library will be discussed in detail.

9

Type Library Reference

1.) Available Data Types

The following data types are supported and available for use with the
EasyLanguage Extension SDK Library:

In EasyLanguage
use:

In your C++ DLL use:

IEasyLanguageObject IEasyLanguageObject*
 ITradeStationPlatform*
Double double
Float float
Int int
Int64 __int64
String or LPSTR LPSTR or char*

While strings may be passed to and from TradeStation-compatible DLL’s, no
attempt should be made, inside a TradeStation-compatible DLL, to change the length
of a string that is an EasyLanguage variable. However, the characters of such
strings may be sorted or otherwise reorganized, as long as the overall string length
remains unchanged by the DLL.

2.) Legacy Compatibility Notice

The following Data Type keywords, available for use with the EasyLanguage
DLL Extension Kit for TradeStation 2000i and TradeStation 6, were previously
provided for future use. Please note that these words should no longer be used with
either the legacy SDK (elkit32.dll) nor the current EasyLanguage Extension SDK
(tskit.dll). This is due to the fact that the legacy platforms did not fully support their
use, and the EasyLanguage Extension SDK no longer requires them:

LPBYTE BYTE
LPDOUBLE DOUBLE
LPWORD WORD

3.) Enumerated Data Types

 The following Enumerated Data Types are declared in the EasyLanguage
Extension SDK Library and are available for use in custom user DLLs:

10

A.) EN_DATA_STREAM

This Enumerated data type may be used to identify a specific data stream
where required. The defined elements for this data type are as follows:

Identifier Value Identifier Value Identifier Value
dataDefault 255 data17 16 data34 33
data1 0 data18 17 data35 34
data2 1 data19 18 data36 35
data3 2 data20 19 data37 36
data4 3 data21 20 data38 37
data5 4 data22 21 data39 38
data6 5 data23 22 data40 39
data7 6 data24 23 data41 40
data8 7 data25 24 data42 41
data9 8 data26 25 data43 42
data10 9 data27 26 data44 43
data11 10 data28 27 data45 44
data12 11 data29 28 data46 45
data13 12 data30 29 data47 46
data14 13 data31 30 data48 47
data15 14 data32 31 data49 48
data16 15 data33 32 data50 49

The element “dataDefault” refers to the data stream for which the calling analysis
technique is applied. All others refer to the specific data stream requested by the
identifier.

B.) enDataType

This enumerated data type is used to identify the native data type of the object
specified. The return value of the DataType property for some of the interface
objects described below will return a value in this data type’s range. The defined
elements for this data type are as follows:

Identifier Value
dtUnknown 1
dtBoolean 2
dtTrueFalse 2
dtString 3
dtInteger 4
dtInt64 5
dtFloat 6
dtDouble 7
dtPointer 11

11

C.) enPlatformType

This enumerated data type has been implemented for future use. It’s purpose
is to identify the platform type of the application running the analysis, specifically
from the PlatformType property of the ITradeStationPlatform interface described
below. The defined elements for this type are as follows:

Identifier Value

ptUnknown -1
ptDesktop 0
ptServer 1

Until this is implemented, developers can expect the PlatformType property of
the ITradeStationPlatform interface to always return ptDesktop.

4.) Structures

A.) TSRuntimeErrorItem

This defined data structure is used when registering a custom runtime error
item in the user DLL. It is composed of the following items:

sCompany – A BSTR variable which should contain the name of the
developer/company providing the DLL.

sErrorCategory – A BSTR variable (undefined at this time).

sErrorLocation – A BSTR variable (undefined at this time).

sSourceString – A BSTR variable (undefined at this time).

sLongString – A BSTR variable which stores the string that appears in the details
section of the TradeStation Events Window, when the specific TSRuntimeErrorItem is
highlighted in the Event Window’s main list.

sShortString – A BSTR variable which stores the string that appears in the
TradeStation Events Window. This should be summary of the error encountered.

nParameters – An integer variable (undefined at this time).

nErrorCode – An integer variable (undefined at this time).

nErrorID – An integer variable (undefined at this time).

5.) Tables of Interface Properties

12

The following interfaces are supported and available for use with the
EasyLanguage Extension SDK Library:

IEasyLanguageObject
IEasyLanguageVariable
IEasyLanguagePrice
IEasyLanguageDateTime
ITradeStationPlatform
IEasyLanguageErrors
IELFrameworkArray
IEasyLanguageSystem
IEasyLanguageProperties
IEasyLanguageServerField

The following interfaces are for internal use only. These interfaces are not intended
for direct access from your DLL:

IEasyLanguageDataElement
IEasyLanguageVector
IEasyLanguageReadOnlyVector
IEasyLanguageEvent

13

A.) IEasyLanguageObject - Property Reference

Property
Name

Description Syntax Notes

Close Returns Closing price for the bar requested as a
double precision decimal value.

InterfaceObject.Close[nBarsBack] 1

CloseMD Returns an IEasyLanguagePrice interface object,
which contains the close for the data stream
requested.

InterfaceObject.CloseMD[enDataStream]

2, 3

CurrentBar Returns CurrentBar value associated with the parent
analysis technique to the interface object, as an
integer.

InterfaceObject.CurrentBar[enDataStream] 3

DataStream Returns the data stream of the interface object as an
EN_DATA_STREAM enumerated value (see the Data
Type Reference).

InterfaceObject.DataStream

DateTime Returns the DateTime value of the interface object as
a double precision decimal value.

InterfaceObject.DateTime[nBarsBack]

1, 4

DateTimeMD Returns an IEasyLanguageDateTime interface object,
which contains the date-time information for the data
stream requested.

InterfaceObject.DateTimeMD[enDataStream]

2, 3

DownTicksMD Returns an IEasyLanguagePrice interface object,
which contains the downticks for the data stream
requested.

InterfaceObject.DownTicksMD[enDataStream]

2, 3

GetServerField Returns an IEasyLanguageServerField interface
object, which contains the applicable data for the
server field requested.

InterfaceObject.GetServerField[szFieldName][enDataStream] 2, 3,
5

High Returns the high for the bar requested as a double
precision decimal value.

InterfaceObject.High[nBarsBack]

1

HighMD Returns an IEasyLanguagePrice interface object,
which contains the high for the data stream
requested.

InterfaceObject.HighMD[enDataStream]

2, 3

Low Returns the low for the bar requested as a double
precision decimal value.

InterfaceObject.Low[nBarsBack]

1

LowMD Returns an IEasyLanguagePrice interface object,
which contains the low for the data stream
requested.

InterfaceObject.LowMD[enDataStream]

3

MaxBarsBack Returns the MaxBarsBack value of the parent analysis
technique to the interface object, as an integer.

InterfaceObject.MaxBarsBack

14

A.) IEasyLanguageObject - Property Reference

Property
Name

Description Syntax Notes

Open Returns the opening price for the bar requested as a
double precision decimal value.

InterfaceObject.Open[nBarsBack]

1

OpenInt Returns the open interest for the bar requested as an
integer value.

InterfaceObject.OpenInt[nBarsBack]

1

OpenIntMD Returns an IEasyLanguagePrice interface object,
which contains the open interest for the data stream
requested.

InterfaceObject.OpenIntMD[enDataStream] 2, 3

OpenMD Returns an IEasyLanguagePrice interface object,
which contains the open for the data stream
requested.

InterfaceObject.OpenMD[enDataStream] 2, 3

Tag This property may be used to store or retrieve any
extra data for a particular need. Example: Store
pointer to customized data type objects.

InterfaceObject.Tag (= nValue) 6

UpTicksMD Returns an IEasyLanguagePrice interface object,
which contains the upticks for the data stream
requested.

InterfaceObject.UpTicksMD[enDataStream] 2, 3

Variables Returns an IEasyLanguageVariable interface object,
which contains data for the variable requested.

InterfaceObject.Variables[nVar | nVarName]

2, 7

VariablesCount Returns the number of variables declared in the
parent analysis technique to the interface object, as
an integer.

InterfaceObject.VariablesCount

Volume Returns the volume for the bar requested as an
integer value.

InterfaceObject.Volume[nBarsBack] 1

VolumeMD Returns an IEasyLanguagePrice interface object,
which contains the volume for the data stream
requested.

InterfaceObject.VolumeMD[enDataStream]

2, 3

15

IEasyLanguageObject Property Table Notes:

1.) nBarsBack - Required. An integer representing the number of bars back from the current bar for which the item is requested. This value
must be greater than or equal to zero and an integer or a runtime error will result.

2.) Please refer to properties that apply to the returned interface type (IEasyLanguagePrice, IEasyLanguageDateTime,
IEasyLanguageServerField, etc) for details on how to return the value in a specific format.

3.) enDataStream – Required. An EN_DATA_STREAM enumerated value representing the data stream for the close price requested. Please
refer to the Data Type section for details on the EN_DATA_STREAM data type.

4.) DateTime format - The whole number portion of the result is returned in standard Windows Date format (i.e. day.time). The decimal
portion of the result represents the amount of time that has transpired for the current day. For example, the return value for the DateTime
property on the 12:00:00pm bar of 10/24/2005 is 38649.50000.

5.) szFieldName - Required. A string value representing the server field requested. The name requested should be sent exactly as it
appears in the elf_info.txt file. Also, the data returned from this property will be the value as of the moment that EasyLanguage calculates the
study and calls the function containing this property. Your EasyLanguage study will NOT update when the requested server field updates,
unless the EasyLanguage code itself refers to the specified server field.

6.) nValue - Required. Stores an integer value for user storage of custom data. May be used to store pointers to user-defined objects.

7.) nVar | nVarName – One or the other is required. Do not use both. nVar is an integer value representing the enumerated value of the
variable requested. If used, nVarName is not used. nVarName is a string value representing the name of the variable requested. Proper
case for the variable name is not required. If nVarName is used, nVar is not used.

16

B.) IEasyLanguagePrice - Property Reference

Property
Name

Description Syntax Notes

AsDateTime Returns the value of the interface object for the bar requested as a
double precision decimal value, which is compatible with the standard
Windows Date/Time format.

InterfaceObject.AsDateTime[nBarsBack]

1, 2

AsDouble Returns the value of the interface object for the bar requested as a
double precision decimal value.

InterfaceObject.AsDouble[nBarsBack]

1

AsInteger Returns the integer portion of the interface object’s value for the bar
requested.

InterfaceObject.AsInteger[nBarsBack]

1

AsString Returns the value of the interface object for the bar requested as a BSTR
object.

InterfaceObject.AsString[nBarsBack]

1

AsTrueFalse Returns the value of the interface object for the bar requested as a
Boolean (TrueFalse) value.

InterfaceObject.AsTrueFalse[nBarsBack]

1, 3

BarsBack Returns the number of bars of price data available to the analysis
technique. The value is returned as an integer.

InterfaceObject.BarsBack

DataStream Returns the data stream of the interface object as an EN_DATA_STREAM
enumerated value. Please refer to the Enumerated Data Types section
for more details on EN_DATA_STREAM.

InterfaceObject.DataStream

DataType Returns the DataType of the interface object as an enumerated data
type (enDataType). Please refer to the Enumerated Data Types section
for more details on enDataType.

InterfaceObject.DataType

Max Returns the largest value in the interface object’s data series up to the
current calculation point. The value is returned as a double precision
floating point number.

InterfaceObject.Max

Min Returns the smallest value in the interface object’s data series up to the
current calculation point. The value is returned as a double precision
floating point number.

InterfaceObject.Min

Name Returns the case sensitive name assigned to the interface object as
declared in the EasyLanguage code. The value is returned as a BSTR.

InterfaceObject.Name

Size Returns the native size, in bytes, of the interface object. The value is
returned as an integer.

InterfaceObject.Size

Value Returns the value stored in the interface object. The return type of this
property is a VARIANT. Therefore, the actual value returned is
dependent on the type of the receiving variable.

InterfaceObject.Value[nBarsBack]

1

17

IEasyLanguagePrice Property Table Notes:

1.) nBarsBack - Required. An integer representing the number of bars back from the current bar for which the item is requested. This value
must be greater than or equal to zero and an integer or a runtime error will result.

2.) DateTime format - The whole number portion of the result is returned in standard Windows Date format (i.e. day.time). The decimal
portion of the result represents the amount of time that has transpired for the current day. For example, the return value for the DateTime
property on the 12:00:00pm bar of 10/24/2005 is 38649.50000.

3.) Boolean values – Named for George Boole, these values are considered “False” if equal to zero, and “True” if non-zero.

18

C.) IEasyLanguageVariable - Property Reference

Property
Name

Description Syntax Notes

AsDateTime Returns the value of the interface object for the bar requested
as a double precision decimal value, which is compatible with
the standard Windows Date/Time format.

InterfaceObject.AsDateTime[nBarsBack] (=
dValue)

1, 10

AsDouble Returns the value of the interface object for the bar requested
as a double precision decimal value.

InterfaceObject.AsDouble[nBarsBack] (=
dValue)

1

AsInteger Returns the integer portion of the interface object’s value for
the bar requested.

InterfaceObject.AsInteger[nBarsBack] (=
nValue)

1, 3

AsInt64 Returns the integer portion (64-bit integer) of the interface
object’s value for the bar requested.

InterfaceObject.AsInt64[nBarsBack] (=
nValue)

1, 3

AsString Returns the value of the interface object for the bar requested
as a BSTR object.

InterfaceObject.AsString[nBarsBack] (=
bsValue)

1, 4

AsTrueFalse Returns the value of the interface object for the bar requested
as a Boolean (TrueFalse) value.

InterfaceObject.AsTrueFalse[nBarsBack]

1, 5

DataStream Returns the data stream of the interface object as an
EN_DATA_STREAM enumerated value (see the Data Type
Reference). Please refer to the Data Types section for more
details on the enDataType type.

InterfaceObject.DataStream

DataType Returns the DataType of the interface object as an enumerated
data type (enDataType). Please refer to the Data Types
section for more details on the enDataType type.

InterfaceObject.DataType

Dimensions Returns the number of dimensions required by the interface
object as an integer, if it is an array. Non-array objects will
return 0.

InterfaceObject.Dimensions

DimensionSize Returns the size of the specified dimension for the interface
object. The value is returned as an integer.

InterfaceObject.DimensionSize[nDimension]

6

IsSeries Returns a long value indicating whether the interface object is
a series object. Series objects will return 1, non-series objects
will return 0.

InterfaceObject.IsSeries 7

Max Returns the largest value in the interface object’s data series
up to the current calculation point. The value is returned as a
double precision floating point number.

InterfaceObject.Max

8

19

C.) IEasyLanguageVariable - Property Reference

Property
Name

Description Syntax Notes

Min Returns the smallest value in the interface object’s data series
up to the current calculation point. The value is returned as a
double precision floating point number.

InterfaceObject.Min

Name Returns the case sensitive name assigned to the interface
object as declared in the EasyLanguage code. The value is
returned as a BSTR.

InterfaceObject.Name

SelectedIndex Returns the active array element of an interface object. InterfaceObject.SelectedIndex[nDimension] (=
nValue)

6, 8

Size Returns the native size, in bytes, of the interface object. The
value is returned as an integer.

InterfaceObject.Size

Value Returns the value stored in the interface object. The return
type of this property is a VARIANT. Therefore, the actual value
returned is dependent on the type of the receiving variable.

InterfaceObject.Value[nBarsBack] (= vValue)

1, 9

20

IEasyLanguageVariable Property Table Notes:

1.) nBarsBack - Required. An integer representing the number of bars back from the current bar for which the item is requested. This value
must be greater than or equal to zero and an integer or a runtime error will result.

2.) dValue - Optional. A double precision floating point value to be assigned to InterfaceObject.

3.) nValue - Optional. An integer value assigned to the property being assigned. Non-integer values will be truncated to an integer. When
assigned to the SelectedIndex[nDimension] property, this value must not exceed the value of the property DimensionSize for the selected
dimension.

4.) bsValue - Optional. A BSTR value to be assigned to InterfaceObject.

5.) bValue – Optional. Boolean value. Named for George Boole, these values are considered “False” if equal to zero, and “True” if non-zero.

6.) nDimension – Required. Specifies the array dimension to be used. This value must not exceed the value of the property Dimensions –
1, or an array bounds runtime error will occur.

7.) IEasyLanguagePrice interface objects, like IEasyLanguageVariable interface objects, support this property. However, price data values in
EasyLanguage are always series values. So they will always return 1. Therefore, this property is unnecessary for IEasyLanguagePrice
interface objects. This property has been purposefully omitted from the IEasyLanguagePrice property reference, above.

8.) The SelectedIndex property must be set for every dimension of the array before any attempts to access individual array elements can be
made.

9.) vValue – Optional. A variant value to be assigned to the property.

10.) DateTime format - The whole number portion of the result is returned in standard Windows Date format (i.e. day.time). The decimal
portion of the result represents the amount of time that has transpired for the current day. For example, the return value for the DateTime
property on the 12:00:00pm bar of 10/24/2005 is 38649.50000.

21

D.) IEasyLanguageDateTime - Property Reference

Property
Name

Description Syntax Notes

AsDateTime Returns the value of the interface object for the bar requested as a
double precision decimal value, which is compatible with the standard
Windows Date/Time format.

InterfaceObject.AsDateTime[nBarsBack]

1, 2

AsString Returns the value of the interface object for the bar requested as a BSTR
object.

InterfaceObject.AsString[nBarsBack] 1

AsDate Returns the date portion of the DateTime value for the interface object.
The result is returned as a double precision decimal value, which is
compatible with the standard Windows Date/Time format.

InterfaceObject.AsDate[nBarsBack]

1, 2

AsTime Returns the time portion of the DateTime value for the interface object.
The result is returned as a double precision decimal value, which is
compatible with the standard Windows Date/Time format.

InterfaceObject.AsTime[nBarsBack]

1, 2

Day Returns the day of the DateTime value for the interface object. The
value is returned as an integer, representing the day of the month.

InterfaceObject.Day[nBarsBack] 1

Hour Returns the hour of the DateTime value for the interface object. The
value is returned as an integer, representing the hour of the day.

InterfaceObject.Hour[nBarsBack] 1

Milliseconds This property returns the milliseconds portion of the DateTime value for
the interface object. The value is returned as an integer, representing
the milliseconds portion of the time. This property is not yet functional
when used to reference bar data. At present, any time reference in an
EasyLanguage object will return 0 for seconds and milliseconds.

InterfaceObject.Milliseconds[nBarsBack]

1

Minutes Returns the minutes portion of the DateTime value for the interface
object. The value is returned as an integer, representing the minutes
portion of the time.

InterfaceObject.Minutes[nBarsBack]

1

Month Returns the month portion of the DateTime value for the interface object.
The value is returned as an integer, representing the month portion of
the date.

InterfaceObject.Month[nBarsBack]

1

Year Returns the year portion of the DateTime value for the interface object.
The value is returned as an integer, representing the year portion of the
date. The year is returned in YYYY format.

InterfaceObject.Year[nBarsBack]

1

22

IEasyLanguageDateTime Property Table Notes:

1.) nBarsBack - Required. An integer representing the number of bars back from the current bar for which the item is requested. This value
must be greater than or equal to zero and an integer or a runtime error will result.

2.) DateTime format - The whole number portion of the result is returned in standard Windows Date format (i.e. day.time). The decimal
portion of the result represents the amount of time that has transpired for the current day. For example, the return value for the DateTime
property on the 12:00:00pm bar of 10/24/2005 is 38649.50000.

23

E.) ITradeStationPlatform - Property Reference

Property
Name

Description Syntax Notes

PlatformType Not yet functional – reserved for future use. Until this is functional, developers can
expect the PlatformType property of the ITradeStationPlatform interface to always
return ptDesktop (zero). For additional information, see description of
enPlatformType enumerated type, above.

InterfaceObject.PlatformType

CustomerID Returns the customer number associated with the interface object. The value is
returned as an integer.

InterfaceObject.CustomerID

NetworkID Returns the network identification number associated with the interface object.
The value is returned as an integer.

InterfaceObject.NetworkID

24

F.) IEasyLanguageErrors - Property Reference

Property Name Description Syntax Notes

LastRuntimeError Returns the last custom runtime error raised by the analysis
technique. It is returned as an IEasyLanguageErrorItem object.

InterfaceObject.LastRuntimeError

RaiseRuntimeError Allows the developer to generate a custom runtime error from
within a DLL function. The parameter errID must first be
predefined with a call to the RegisterError property.

InterfaceObject.RaiseRuntimeError(errID)

1

RegisterError This property registers a user-defined runtime error, which can
be raised anywhere within the developer’s code.

InterfaceObject.RegisterError(errItem,
errID)

1, 2

25

IEasyLanguageErrors Property Table Notes:

1.) errID - Required. An integer value which represents an error code defined by the developer for the error being generated.

2.) errItem - Required. A TSRuntimeErrorItem object representing the custom runtime error being registered to the user DLL. Please see the
Data Types section for details on this data structure.

26

G.) IELFrameworkArray - Property Reference

Property
Name

Description Syntax Notes

Compare This method will compare the values between two
dynamic array references, for the specified index range.
The method compares the individual elements the
specified number of corresponding elements one to one,
beginning from the Index specified for each dynamic
array.

InterfaceObject.Compare(nSourceHandle,
nDestHandle, nSourceIndex, nDestIndex, nCount);

1,2,3,4,5

Copy This method will copy the values from the source array to
the destination array. The method will copy the specified
number of elements one to one, beginning from the Index
specified for each dynamic array.

InterfaceObject.Copy(nSourceHandle,
nDestHandle, nSourceIndex, nDestIndex, nCount);

1,2,3,4,5

Count This property returns the total number of elements in the
specified array. The highest indexed value will be the return
value minus one (i.e. If Count returns 1, the highest Index
value allowable will be 0). The value returned is an Integer.

InterfaceObject.Count[nHandle]; 6

DataType This property returns the data type of the values stored in
the array, as an enumerated data type value (see
enumerated values above).

InterfaceObject.DataType[nHandle]; 6

GetFloatValue This property returns the floating point equivalent of the
value passed to the specified array index.

InterfaceObject.GetFloatValue(nHandle, nIndex); 6,7

GetIntegerValue This property assigns the integer equivalent of the value
passed to the specified array index.

InterfaceObject.GetIntegerValue(nHandle, nIndex,
nValue);

6,7,8

GetValue This method returns the value of the specified index as a
Variant type, for the dynamic array handle passed into it.

InterfaceObject.GetValue(nHandle, nIndex); 6,7

IsValidHandle This property returns a long value. It will return a non-zero
value when the parameter passed is designated to a valid
handle for a dynamic array, and a zero when it does not. For
evaluation purposes, a call to the property may be used in
logical expressions.

InterfaceObject.IsValidHandle(nHandle); 6

27

Property
Name

Description Syntax Notes

Resize This method resizes an array to the specified length. If the
new size is smaller than the old one, the extra elements are
truncated from the array. If the new size is larger than the
existing array, the new elements are assigned the initialized
value that was originally assigned to the array.

InterfaceObject.Resize(nHandle, nNewSize); 6,9

SetFloatValue This property assigns the floating-point value passed to the
specified array index.

InterfaceObject.SetFloatValue(nHandle, nIndex,
fValue)

6,7,10

SetIntegerValue This property assigns the integer equivalent of the value
passed to the specified array index.

InterfaceObject.SetIntegerValue(nHandle, nIndex,
nValue)

6,7,8

SetValue This method sets the value of the specified index, for the
dynamic array handle passed into it. The value will internally
format, according to the datatype that was declared or
detected for the dynamic array.

InterfaceObject.SetValue(nHandle, nIndex, vValue) 6,7,11

SetValueRange This method sets the value of the specified index range, for
the dynamic array handle passed into it. The value will
internally format, according to the data type that was
declared or detected for the dynamic array.

InterfaceObject.SetValue(nHandle, nBegin, nEnd,
vValue)

6,11

Sort This method will sort the values in the specified index range,
for the dynamic array handle passed into it. The value will
sort in Ascending, or Descending order, depending on the
Ascending value passed to it.

InterfaceObject.Sort(nHandle, nBegin, nEnd,
bAscending)

6

Sum This method returns the sum of the values within the
specified data range. Values are returned as a double-
precision floating point value.

InterfaceObject.Sum(nHandle, nBegin, nEnd) 6

28

IELFrameworkArray Property Table Notes:

1.) nSourceHandle - Required. Represents the handle ID of the first array.

2.) nDestHandle - Required. Represents the handle ID of the second array.

3.) nSourceIndex - Required. An integer that identifies the index to begin the comparison from for the first array.

4.) nDestIndex - Required. An integer that identifies the index to begin the comparison from for the second array.

5.) nCount - Required. An Integer that identifies the number of elements to perform the comparison upon.

6.) nHandle - Required. Represents the handle ID of the requested array.

7.) nIndex – Required. An integer that identifies the array element requested.

8.) nValue – Required. The Integer value that will be assigned to the array element specified.

9.) nNewSize – Required. The An Integer representing the new size of the array.

10.) fValue – Required. The value that will be assigned to the array element specified.

11.) vValue – Required. A variant that will be used to set the new value of the specified array index.

29

H.) IEasyLanguageSystem - Property Reference

Property
Name

Description Syntax Notes

Array This property returns an IELFrameworkArray interface object for
the Array Framework associated with the EasyLanguage Object.

InterfaceObject.Array

30

 I.) IEasyLanguageProperties - Property Reference

Property
Name

Description Syntax Notes

Items This is an indexed property. It is a map of COM BSTR vs. a COM
Variant. It can be used in a manner similar to that described above
for the Tag property of the IEasyLanguageObject interface (that is,
for storage of user data of any type).

VARIANT x =
Properties..Items[“MY_DATA”];

1, 2

ItemsByInteger This is an indexed property. It is a map of COM integer vs. a COM
Variant. It can be used in a manner similar to that described above
for the Tag property of the IEasyLanguageObject interface (that is,
for storage of user data of any type).

VARIANT x =
Properties..ItemsByInteger[MY_DATA];

1, 2

31

IEasyLanguageProperties Property Table Notes:

1.) General: This interface is a collection of properties in the format: field = value. Field can be a string or an integer. Value is always a
Variant. This property is made available for developer storage of data of any type - an integer, a double, a pointer to an object, an interface,
etc. The Items property can be considered to be an expanded version of the Tag property of the IEasyLanguageObject interface, described
above. The Tag property allows the developer to store a single item. However, the IEasyLanguageProperties Items property allows for
developer storage of multiple items. The Items property can be used to store per-instance or per-program data.

2.) When large amounts of data are being stored, the ItemsByInteger property is preferred to the Items property for best computational
speed performance. This is because ItemsByInteger can be accessed without using the slower string operations that Items requires.

32

J.) EasyLanguageServerField - Property Reference

Property
Name

Description Syntax Notes

AsDateTime This property returns the value of the interface object for the
bar requested as a double precision decimal value, which is
compatible with the standard Windows Date/Time format.

InterfaceObject.AsDateTime[nBarsBack]; 1

AsDouble This property returns the value of the interface object for the
bar requested as a double precision decimal value.

InterfaceObject.AsDouble[nBarsBack];

1

AsInteger This property returns the integer portion of the interface
object’s value for the bar requested.

InterfaceObject.AsInteger[nBarsBack]; 1

AsString This property returns the value of the interface object for the
bar requested as a BSTR object.

InterfaceObject.AsString[nBarsBack]; 1

AsTrueFalse This property returns the value of the interface object for the
bar requested as a TrueFalse, or boolean value. NOTE: The
property will return “False” for values equal to zero, and “True”
for all non-zero values.

InterfaceObject.AsTrueFalse[nBarsBack]; 1

DataStream This property returns the DataStream of the interface object
as an enumerated data stream type (EN_DATA_STREAM).
Please refer to the Data Types section for more details on the
EN_DATA_STREAM type.

InterfaceObject.DataStream;

DataType This property returns the data type of the interface object as
an enumerated data type (enDataType). Please refer to the
Data Type section for more details on the enDataType type.

InterfaceObject.DataType;

IsSeries This property returns a long value indicating whether the
interface object is a series object. Series objects will return 1,
non-series objects will return 0. NOTE: IEasyLanguagePrice
interface objects support this property, however, price data
values in EasyLanguage are always series values. They will
always return 1; therefore, this property is unnecessary for
IEasyLanguagePrice interface objects. This property has been
purposefully omitted from the IEasyLanguagePrice property
reference.

InterfaceObject.IsSeries;

33

Property
Name

Description Syntax Notes

Max This property returns the largest value in the interface object’s
data series up to the current calculation point. The value is
returned as a double precision floating point number.

InterfaceObject.Max;

Min This property returns the smallest value in the interface
object’s data series up to the current calculation point. The
value is returned as a double precision floating point number.

InterfaceObject.Min;

Name This property returns the case sensitive name assigned to the
interface object as declared in the EasyLanguage code. The
value is returned as a BSTR.

InterfaceObject.Name;

Size This property returns the native size, in bytes, of the interface
object. The value is returned as an integer.

InterfaceObject.Size;

Value This property returns the value stored in the interface object.
NOTE: The return type of this property is a VARIANT;
therefore, the actual value returned is dependant on the type
of the receiving variable.

InterfaceObject.Value[nBarsBack]; 1

34

IEasyLanguageServerField Property Table Notes:

1.) nBarsBack - Required. An integer representing the number of bars back from the current bar for which the item is requested. NOTE: This
value must be a positive integer or a runtime error will result. Please see technical notes for details

35

Demonstration DLL Code

#import "C:\Program Files\TradeStation 8.1 (Build 3006)\Program\tskit.dll" no_namespace
#include <atlbase.h>

//
// Calculate simple moving average value

double __stdcall MovAvg
(IEasyLanguageObject * pELObj, int iAvgLength)
{
 double dMovAvg ;
 dMovAvg = 0 ;

 // verify that sufficient bars have passed before back-referencing historical prices

if(pELObj->CloseMD[data1]->BarsBack > iAvgLength && iAvgLength > 0)
 {
 double dSum = 0.0 ;
 for (int i = 0; i < iAvgLength; i++)
 {
 dSum += pELObj->CloseMD[data1]->AsDouble[i] ;
 }
 dMovAvg = dSum / iAvgLength ;
 }
 return dMovAvg ;
}

//
// Generate a run-time error in TradeStation
// This function is called internally by other DLL functions when an error in TradeStation
// is to be produced.

void fnGenRunTimeError
(IEasyLanguageObject * pEL, int iErrorNum)

36

{
 TSRuntimeErrorItem tsItem;
 int m_HistErr ;
 tsItem.sCompany = _bstr_t("TradeStation Securities, Inc.").copy();
 tsItem.sErrorLocation = _bstr_t("Example Code Library").copy();
 tsItem.sErrorCategory = _bstr_t("Error").copy();
 tsItem.sLongString = NULL;
 tsItem.nParameters = 0;

 switch (iErrorNum)
 {
 case 1:
 {
 // Error 1

tsItem.sShortString = _bstr_t("Error – Description of Error 1 goes here.").copy();
 tsItem.sSourceString = _bstr_t("Additional detailed description goes here.").copy();
 tsItem.nErrorCode = iErrorNum ;
 }
 break ;
 case 2:
 {
 // Error 2
 tsItem.sShortString = _bstr_t("Error – Description of Error 2 goes here.").copy();
 tsItem.sSourceString = _bstr_t("Additional detailed description goes here.").copy();
 tsItem.nErrorCode = iErrorNum ;
 }
 break ;
 default:
 {
 // Generate a run-time error of undefined type or origin
 tsItem.sShortString = _bstr_t("Undefined error in "
 "MyDLL.dll.").copy();
 tsItem.sSourceString = _bstr_t("Error origin undefined.").copy();
 tsItem.nErrorCode = 9999 ;
 }
 }

 m_HistErr = pEL->Errors->RegisterError(&tsItem) ;

37

 pEL->Errors->RaiseRuntimeError(m_HistErr) ;
}

//
// Server field call
double __stdcall GETSERVERFIELD
(IEasyLanguageObject *pEL, LPSTR szFName)
{
 IEasyLanguageServerField *iSF = pEL->ServerField[_bstr_t(szFName)][dataDefault];
 return iSF->AsDouble[0];

}

//
// Sort an EasyLanguage array using this DLL function

void __stdcall MYARRAYSORT
(IEasyLanguageObject* pELObj, char* MyArrayName)
{
 int nOuter, nInner ;
 IEasyLanguageVariable* pELVar = pELObj->Variables[MyArrayName] ;
 if (pELVar->Dimensions == 1)
 {
 int nSize = pELVar->DimensionSize[0] ;
 for (nOuter = 0; nOuter < nSize - 1; nOuter++)
 {
 for (nInner = nOuter + 1; nInner < nSize; nInner++)
 {
 pELVar->SelectedIndex[0] = nInner ;
 double dSecondValue = pELVar->Value[0] ;
 pELVar->SelectedIndex[0] = nOuter ;
 double dFirstValue = pELVar->Value[0] ;
 if (dSecondValue < dFirstValue)
 {
 double dTmp = dFirstValue ;
 pELVar->Value[0] = dSecondValue ;

38

 pELVar->SelectedIndex[0] = nInner ;
 pELVar->Value[0] = dTmp ;
 }
 }
 }
 }
}

//
// Fill dynamic EasyLanguage array

void __stdcall FILLDYNARRAY
(IEasyLanguageObject * pEL, LPSTR PassedVar)
{
 IEasyLanguageVariablePtr pMyVar = NULL;
 IELFrameworkArrayPtr pDynArray = NULL;

 IEasyLanguageDateTime * pMyDateTime = pEL->DateTimeMD[dataDefault] ;
 double myDT = pMyDateTime->AsDateTime [0] ;

 long nTotVars = pEL->VariablesCount;
 for (long n = 0; n < nTotVars; n++)
 {
 pMyVar = pEL->Variables[n];
 _bstr_t mybstr = pMyVar->Name;
 if (pMyVar->DataType == dtHandle)
 {
 int nValue = pMyVar->GetAsInteger(0);
 CComVariant xx(pEL->Close[0]);
 if (pEL->System->Array->IsValidHandle((int) nValue) && (mybstr == (_bstr_t) PassedVar))
 {
 pDynArray = pEL->System->Array;
 pDynArray->SetValue(nValue, 0, CComVariant(xx));
 }
 }
 }
}

39

//
// Sum upticks and downticks from intraday chart to get volume in DLL – store in global DLL variable

double dMyDLLDouble = 0; //global variable

int __stdcall SetdMyDLLDouble
(IEasyLanguageObject * ELObjP)
{
 dMyDLLDouble = ELObjP->UpTicksMD[dataDefault]->AsDouble[0]
 + ELObjP->DownTicksMD[dataDefault]->AsDouble[0] ;
 return 1;
}

//

// Place a 64-bit integer value into an EasyLanguage variable whose data type is 64-bit integerint __stdcall
Int64Example(IEasyLanguageObject* pEL, __int64 Int64Value, LPSTR VarName)
{

 pEL‐>Variables[VarName]‐>AsInt64[0] = Int64Value ;

 return 1 ;
}

40

Support

For support with the use of the EasyLanguage Extension SDK, please visit the Support
Forum at TradeStation.com. In the TradeStation & EasyLanguage Support area of the
Support Forum there is a support area dedicated to the use of TradeStation-compatible
DLL’s in conjunction with EasyLanguage. Additional code examples are available in
this area of the Support Forum.

Here is a direct link to the EasyLanguage-DLL category of the Support Forum:

https://community.tradestation.com/discussions/forum.aspx?forum_id=213&selcategory=
1853&subcategory=easylanguage-dll

If you have TradeStation-related DLL questions, please create a new topic in the above-
linked area of the Support Forum. Click on the link labeled “New Topic” at the top of
that web page. This will take you to the “New Topic” form. When completing the form,
choose as the “Category” for your topic “EasyLanguage”. As the sub-category for your
question, choose “EasyLanguage-DLL.”

